Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Commun ; 13(1): 5760, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-2050381

ABSTRACT

SARS coronavirus 2 (SARS-CoV-2) continues to evolve and new variants emerge. Using nationwide Danish data, we estimate the transmission dynamics of SARS-CoV-2 Omicron subvariants BA.1 and BA.2 within households. Among 22,678 primary cases, we identified 17,319 secondary infections among 50,588 household contacts during a 1-7 day follow-up. The secondary attack rate (SAR) was 29% and 39% in households infected with Omicron BA.1 and BA.2, respectively. BA.2 was associated with increased susceptibility of infection for unvaccinated household contacts (Odds Ratio (OR) 1.99; 95%-CI 1.72-2.31), fully vaccinated contacts (OR 2.26; 95%-CI 1.95-2.62) and booster-vaccinated contacts (OR 2.65; 95%-CI 2.29-3.08), compared to BA.1. We also found increased infectiousness from unvaccinated primary cases infected with BA.2 compared to BA.1 (OR 2.47; 95%-CI 2.15-2.84), but not for fully vaccinated (OR 0.66; 95%-CI 0.57-0.78) or booster-vaccinated primary cases (OR 0.69; 95%-CI 0.59-0.82). Omicron BA.2 is inherently more transmissible than BA.1. Its immune-evasive properties also reduce the protective effect of vaccination against infection, but do not increase infectiousness of breakthrough infections from vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Denmark/epidemiology , Family Characteristics , Humans , SARS-CoV-2/genetics
2.
Nat Commun ; 13(1): 5573, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-2042321

ABSTRACT

In late 2021, the Omicron SARS-CoV-2 variant overtook the previously dominant Delta variant, but the extent to which this transition was driven by immune evasion or a change in the inherent transmissibility is currently unclear. We estimate SARS-CoV-2 transmission within Danish households during December 2021. Among 26,675 households (8,568 with the Omicron VOC), we identified 14,140 secondary infections within a 1-7-day follow-up period. The secondary attack rate was 29% and 21% in households infected with Omicron and Delta, respectively. For Omicron, the odds of infection were 1.10 (95%-CI: 1.00-1.21) times higher for unvaccinated, 2.38 (95%-CI: 2.23-2.54) times higher for fully vaccinated and 3.20 (95%-CI: 2.67-3.83) times higher for booster-vaccinated contacts compared to Delta. We conclude that the transition from Delta to Omicron VOC was primarily driven by immune evasiveness and to a lesser extent an inherent increase in the basic transmissibility of the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Denmark/epidemiology , Family Characteristics , Humans
3.
Lancet Reg Health Eur ; 20: 100452, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1914782

ABSTRACT

Background: The level of protection after a SARS-CoV-2 infection against reinfection and COVID-19 disease remains important with much of the world still unvaccinated. Methods: Analysing nationwide, individually referable, Danish register data including RT-PCR-test results, we conducted a cohort study using Cox regression to compare SARS-CoV-2 infection rates before and after a primary infection among still unvaccinated individuals, adjusting for sex, age, comorbidity and residency region. Estimates of protection against infection were calculated as 1 minus the hazard ratio. Estimates of protection against symptomatic infections and infections leading to hospitalisation were also calculated. The prevalence of infections classified as symptomatic or asymptomatic was compared for primary infections and reinfections. The study also assessed protection against each of the main viral variants after a primary infection with an earlier variant by restricting follow-up time to distinct, mutually exclusive periods during which each variant dominated. Findings: Until 1 July 2021 the estimated protection against reinfection was 83.4% (95%CI: 82.2-84.6%); but lower for the 65+ year-olds (72.2%; 95%CI: 53.2-81.0%). Moderately higher estimates were found for protection against symptomatic disease, 88.3% overall (95%CI: 85.9-90.3%). First-time cases who reported no symptoms were more likely to experience a reinfection (odds ratio: 1.48; 95%CI: 1.35-1.62). By autumn 2021, when infections were almost exclusively caused by the Delta variant, the estimated protection following a recent first infection was 91.3% (95%CI: 89.7-92.7%) compared to 71.4% (95%CI: 66.9-75.3%) after a first infection over a year earlier. With Omicron, a first infection with an earlier variant in the past 3-6 months gave an estimated 51.0% (95%CI: 50.1-52.0%) protection, whereas a first infection longer than 12 months earlier provided only 19.0% (95%CI: 17.2-20.5%) protection. Protection by an earlier variant-infection against hospitalisation due to a new infection was estimated at: 86.6% (95%CI: 46.3-96.7%) for Alpha, 97.2% (95%CI: 89.0-99.3%) for Delta, and 69.8% (95%CI: 51.5-81.2%) for the Omicron variant. Interpretation: SARS-CoV-2 infection offered a high level of sustained protection against reinfection, comparable with that offered by vaccines, but decreased with the introduction of new main virus variants; dramatically so when Omicron appeared. Protection was lower among the elderly but appeared more pronounced following symptomatic compared to asymptomatic infections. The level of estimated protection against serious disease was somewhat higher than that against infection and possibly longer lasting. Decreases in protection against reinfection, seemed primarily to be driven by viral evolution. Funding: None.

4.
Nat Commun ; 13(1): 3764, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1908181

ABSTRACT

Effective vaccines protect individuals by not only reducing the susceptibility to infection, but also reducing the infectiousness of breakthrough infections in vaccinated cases. To disentangle the vaccine effectiveness against susceptibility to infection (VES) and vaccine effectiveness against infectiousness (VEI), we took advantage of Danish national data comprising 24,693 households with a primary case of SARS-CoV-2 infection (Delta Variant of Concern, 2021) including 53,584 household contacts. In this setting, we estimated VES as 61% (95%-CI: 59-63), when the primary case was unvaccinated, and VEI as 31% (95%-CI: 26-36), when the household contact was unvaccinated. Furthermore, unvaccinated secondary cases with an infection exhibited a three-fold higher viral load compared to fully vaccinated secondary cases with a breakthrough infection. Our results demonstrate that vaccinations reduce susceptibility to infection as well as infectiousness, which should be considered by policy makers when seeking to understand the public health impact of vaccination against transmission of SARS-CoV-2.


Subject(s)
COVID-19 , Vaccines , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccination
5.
Lancet Infect Dis ; 22(7): 967-976, 2022 07.
Article in English | MEDLINE | ID: covidwho-1799640

ABSTRACT

BACKGROUND: Estimates of the severity of the SARS-CoV-2 omicron variant (B.1.1.529) are crucial to assess the public health impact associated with its rapid global dissemination. We estimated the risk of SARS-CoV-2-related hospitalisations after infection with omicron compared with the delta variant (B.1.617.2) in Denmark, a country with high mRNA vaccination coverage and extensive free-of-charge PCR testing capacity. METHODS: In this observational cohort study, we included all RT-PCR-confirmed cases of SARS-CoV-2 infection in Denmark, with samples taken between Nov 21 (date of first omicron-positive sample) and Dec 19, 2021. Individuals were identified in the national COVID-19 surveillance system database, which included results of a variant-specific RT-PCR that detected omicron cases, and data on SARS-CoV-2-related hospitalisations (primary outcome of the study). We calculated the risk ratio (RR) of hospitalisation after infection with omicron compared with delta, overall and stratified by vaccination status, in a Poisson regression model with robust SEs, adjusted a priori for reinfection status, sex, age, region, comorbidities, and time period. FINDINGS: Between Nov 21 and Dec 19, 2021, among the 188 980 individuals with SARS-CoV-2 infection, 38 669 (20·5%) had the omicron variant. SARS-CoV-2-related hospitalisations and omicron cases increased during the study period. Overall, 124 313 (65·8%) of 188 980 individuals were vaccinated, and vaccination was associated with a lower risk of hospitalisation (adjusted RR 0·24, 95% CI 0·22-0·26) compared with cases with no doses or only one dose of vaccine. Compared with delta infection, omicron infection was associated with an adjusted RR of hospitalisation of 0·64 (95% CI 0·56-0·75; 222 [0·6%] of 38 669 omicron cases admitted to hospital vs 2213 [1·5%] of 150 311 delta cases). For a similar comparison by vaccination status, the RR of hospitalisation was 0·57 (0·44-0·75) among cases with no or only one dose of vaccine, 0·71 (0·60-0·86) among those who received two doses, and 0·50 (0·32-0·76) among those who received three doses. INTERPRETATION: We found a significantly lower risk of hospitalisation with omicron infection compared with delta infection among both vaccinated and unvaccinated individuals, suggesting an inherent reduced severity of omicron. Our results could guide modelling of the effect of the ongoing global omicron wave and thus health-care system preparedness. FUNDING: None.


Subject(s)
COVID-19 , Hepatitis D , COVID-19/epidemiology , Cohort Studies , Denmark/epidemiology , Hospitalization , Humans , SARS-CoV-2/genetics
6.
Epidemiol Infect ; 150: e123, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1758079

ABSTRACT

Denmark hosted four games during the 2020 UEFA European championships (EC2020). After declining positive SARS-CoV-2 test rates in Denmark, a rise occurred during and after the tournament, concomitant with the replacement of the dominant Alpha lineage (B.1.1.7) by the Delta lineage (B.1.617.2), increasing vaccination rates and cessation of several restrictions. A cohort study including 33 227 cases was conducted from 30 May to 25 July 2021, 14 days before and after the EC2020. Included was a nested cohort with event information from big-screen events and matches at the Danish national stadium, Parken (DNSP) in Copenhagen, held from 12 June to 28 June 2021. Information from whole-genome sequencing, contact tracing and Danish registries was collected. Case-case connections were used to establish transmission trees. Cases infected on match days were compared to cases not infected on match days as a reference. The crude incidence rate ratio (IRR) of transmissions was 1.55, corresponding to 584 (1.76%) cases attributable to EC2020 celebrations. The IRR adjusted for covariates was lower (IRR 1.41) but still significant, and also pointed to a reduced number of transmissions from fully vaccinated cases (IRR 0.59). These data support the hypothesis that the EC2020 celebrations contributed to the rise of cases in Denmark in the early summer of 2021.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Cohort Studies , Denmark/epidemiology , Humans
7.
Euro Surveill ; 27(10)2022 03.
Article in English | MEDLINE | ID: covidwho-1742167

ABSTRACT

Following emergence of the SARS-CoV-2 variant Omicron in November 2021, the dominant BA.1 sub-lineage was replaced by the BA.2 sub-lineage in Denmark. We analysed the first 2,623 BA.2 cases from 29 November 2021 to 2 January 2022. No epidemiological or clinical differences were found between individuals infected with BA.1 versus BA.2. Phylogenetic analyses showed a geographic east-to-west transmission of BA.2 from the Capital Region with clusters expanding after the Christmas holidays. Mutational analysis shows distinct differences between BA.1 and BA.2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Denmark/epidemiology , Humans , Molecular Epidemiology , Phylogeny , SARS-CoV-2/genetics
8.
Nat Commun ; 12(1): 7251, 2021 12 13.
Article in English | MEDLINE | ID: covidwho-1569250

ABSTRACT

New lineages of SARS-CoV-2 are of potential concern due to higher transmissibility, risk of severe outcomes, and/or escape from neutralizing antibodies. Lineage B.1.1.7 (the Alpha variant) became dominant in early 2021, but the association between transmissibility and risk factors, such as age of primary case and viral load remains poorly understood. Here, we used comprehensive administrative data from Denmark, comprising the full population (January 11 to February 7, 2021), to estimate household transmissibility. This study included 5,241 households with primary cases; 808 were infected with lineage B.1.1.7 and 4,433 with other lineages. Here, we report an attack rate of 38% in households with a primary case infected with B.1.1.7 and 27% in households with other lineages. Primary cases infected with B.1.1.7 had an increased transmissibility of 1.5-1.7 times that of primary cases infected with other lineages. The increased transmissibility of B.1.1.7 was multiplicative across age and viral load.


Subject(s)
Age Factors , COVID-19/transmission , SARS-CoV-2 , Viral Load , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Child , Child, Preschool , Denmark/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Young Adult
9.
Lancet Infect Dis ; 21(11): 1507-1517, 2021 11.
Article in English | MEDLINE | ID: covidwho-1492844

ABSTRACT

BACKGROUND: The more infectious SARS-CoV-2 lineage B.1.1.7 rapidly spread in Europe after December, 2020, and a concern that B.1.1.7 could cause more severe disease has been raised. Taking advantage of Denmark's high RT-PCR testing and whole genome sequencing capacities, we used national health register data to assess the risk of COVID-19 hospitalisation in individuals infected with B.1.1.7 compared with those with other SARS-CoV-2 lineages. METHODS: We did an observational cohort study of all SARS-CoV-2-positive cases confirmed by RT-PCR in Denmark, sampled between Jan 1 and March 24, 2021, with 14 days of follow-up for COVID-19 hospitalisation. Cases were identified in the national COVID-19 surveillance system database, which includes data from the Danish Microbiology Database (RT-PCR test results), the Danish COVID-19 Genome Consortium, the National Patient Registry, the Civil Registration System, as well as other nationwide registers. Among all cases, COVID-19 hospitalisation was defined as first admission lasting longer than 12 h within 14 days of a sample with a positive RT-PCR result. The study population and main analysis were restricted to the proportion of cases with viral genome data. We calculated the risk ratio (RR) of admission according to infection with B.1.1.7 versus other co-existing lineages with a Poisson regression model with robust SEs, adjusted a priori for sex, age, calendar time, region, and comorbidities. The contribution of each covariate to confounding of the crude RR was evaluated afterwards by a stepwise forward inclusion. FINDINGS: Between Jan 1 and March 24, 2021, 50 958 individuals with a positive SARS-CoV-2 test and at least 14 days of follow-up for hospitalisation were identified; 30 572 (60·0%) had genome data, of whom 10 544 (34·5%) were infected with B.1.1.7. 1944 (6·4%) individuals had a COVID-19 hospitalisation and of these, 571 (29·4%) had a B.1.1.7 infection and 1373 (70·6%) had an infection with other SARS-CoV-2 lineages. Although the overall number of hospitalisations decreased during the study period, the proportion of individuals infected with B.1.1.7 increased from 3·5% to 92·1% per week. B.1.1.7 was associated with a crude RR of hospital admission of 0·79 (95% CI 0·72-0·87; p<0·0001) and an adjusted RR of 1·42 (95% CI 1·25-1·60; p<0·0001). The adjusted RR was increased in all strata of age and calendar period-the two covariates with the largest contribution to confounding of the crude RR. INTERPRETATION: Infection with SARS-CoV-2 lineage B.1.1.7 was associated with an increased risk of hospitalisation compared with that of other lineages in an analysis adjusted for covariates. The overall effect on hospitalisations in Denmark was lessened due to a strict lockdown, but our findings could support hospital preparedness and modelling of the projected impact of the epidemic in countries with uncontrolled spread of B.1.1.7. FUNDING: None.


Subject(s)
COVID-19/epidemiology , Hospitalization/statistics & numerical data , SARS-CoV-2/isolation & purification , Adolescent , Adult , COVID-19/diagnosis , COVID-19/therapy , COVID-19/transmission , COVID-19 Nucleic Acid Testing/statistics & numerical data , Child , Child, Preschool , Cohort Studies , Comorbidity , Denmark/epidemiology , Female , Genome, Viral/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , RNA, Viral/genetics , RNA, Viral/isolation & purification , Risk Assessment/statistics & numerical data , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Whole Genome Sequencing/statistics & numerical data , Young Adult
10.
APMIS ; 129(7): 438-451, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1291686

ABSTRACT

The COVID-19 pandemic has led to an unprecedented demand for real-time surveillance data in order to inform critical decision makers regarding the management of the pandemic. The aim of this review was to describe how the Danish national microbiology database, MiBa, served as a cornerstone for providing data to the real-time surveillance system by linkage to other nationwide health registries. The surveillance system was established on an existing IT health infrastructure and a close network between clinical microbiologists, information technology experts, and public health officials. In 2020, testing capacity for SARS-CoV-2 was ramped up from none to over 10,000 weekly PCR tests per 100,000 population. The crude incidence data mirrored this increase in testing. Real-time access to denominator data and patient registries enabled adjustments for fluctuations testing activity, providing robust data on crude SARS-CoV-2 incidence during the changing diagnostic and management strategies. The use of the same data for different purposes, for example, final laboratory reports, information to the public, contact tracing, public health, and science, has been a critical asset for the pandemic response. It has also raised issues concerning data protection and critical capacity of the underlying technical systems and key resources. However, even with these limitations, the setup has enabled decision makers to adopt timely interventions. The experiences from COVID-19 may motivate a transformation from traditional indicator-based public health surveillance to an all-encompassing information system based on access to a comprehensive set of data sources, including diagnostic and reference microbiology.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2 , Basic Reproduction Number , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Databases, Factual , Denmark/epidemiology , Electronics , Health Care Sector , Humans , Registries
SELECTION OF CITATIONS
SEARCH DETAIL